A Quantitative analysis of evapotranspiration in the traditional oasis in the south of Tunisia

Main Article Content

M. H. Sellami
N. Nasri

Abstract

Estimating the evapotranspiration is important for many sides. The first is to determine the amount of water really needed by vegetable canopies. The second is to analyse the role of plants in buffering the effects of climatic change. In this work we have tried to evaluate the amount of evapotranspiration inside and above the traditional oasis of Tozeur by monitoring profiles of global radiation, net radiation, sap flow, sensible heat flux, latent heat flux, air temperature and air humidity. We have used fixed captors installed at different heights inside the oasis and mobile captors carried by a meteorological ballon. Results show that evapotranspiration deduced from the total global radiation intercepted inside the oasis is equivalent to 4,4 mm/day. That estimated from global radiation received above the oasis is equivalent to 6,81 mm/day. When using the total net radiation intercepted by all the oasis (respectively the net radiation received above the oasis), the evapotranspiration is equivalent to 3,24 mm/day (respectively about 4 mm/day). The evapotranspiration estimated from daily sap flow transpired is about 3,3 mm/day. We have noticed also, that inside the oasis air temperature follows a decreasing function with the altitude in the early morning and later in the afternoon. It follows an increasing function between 9 and 15 hours. Above the oasis, air temperature, relative humidity and air pressure, follow globally decreasing functions with altitudes. However, considerable levels of fluctuation were recorded for all the parameters throughout the first altitudes above the oasis.

Article Details

How to Cite
A Quantitative analysis of evapotranspiration in the traditional oasis in the south of Tunisia. (2021). Life and Environment, 71(1), 19-27. https://doi.org/10.57890/VIEMILIEU/2021.71-003
Section
Articles

References

Baars H, Ansmann A, Engelmann R, Althausen D 2008. Continuous monitoring of the boundary-layer top with lidar. Atmos Chem Phys 8: 7281-7296.

Baklanov AA, Grisogono B, Bornstein R, Mahrt L, Zilitinkevich SS, Taylor P, Larsen SE, Rotach MW, Fernando HJS 2011. The nature, theory, and modeling of atmospheric planetary boundary layers. Bull Am Meteorol Soc 92:123-12.

Bau-Show L, Huimin L, Ming-Che H, Supattra V, Cheng-I H 2020. Canopy Resistance and Estimation of Evapotranspiration above a Humid Cypress Forest”. Adv Meteorol: 1-16.

Berbigier P, Bonnefond JM, Mellmann P 2001. CO2 and water vapor fluxes for 2 years above Euroflux forest site. Agricult Forest Meteorol 108: 183-197.

Chan FCC, Altaf AM, Khomik M, Brodeur JJ, Peichl M, Restrepo-Coupe N, Thorne R, Beamesderfer E, McKenzie S, Xu B, Croft H, Pejam M, Trant J, Kula M, Skubel Rçoçoi 2018. Carbon, water and energy exchange dynamics of a young pine plantation forest during the initial fourteen years of growth. Forest Ecol Manage 410: 12-26.

Cimini D, Haeffelin M, Kotthaus S, Cimini D, Haeffelin M, Kotthaus S, Löhnert U, Martinet P, O’Connor E, Walden C, Coen MC, Preissler J 2020. Towards the profiling of the atmospheric boundary layer at European scale-introducing the COST Action PROBE. Bull Atmos Sci Technol 1: 23-42.

Dang R, Yang Y, Hu XM, Wang Z, Zhang S 2019. A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using Aerosol Lidar Data. Remote Sens 11: 1590.

Gkikas A, Giannaros TM, Kotroni V, Lagouvardos K 2019. Assessing the radiative impacts of an extreme desert dust outbreak and the potential improvements on short-term weather forecasts: The case of February 2015. Atmos Res 26: 152-170.

Granier A, Loustau D 1994. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricult Forest Meteorol 71: 61-81.

Gustav S 2017. Modeling regional climate vegetation interactions in Europe. Stockholm University: 54 p.

Jarosz N, Brunet Y, Lamaud E, Irvine M, Bonnefond JM, Loustau D 2008. Carbon dioxide and energy flux partitioning between the understorey and the overstorey of a maritime pine forest during a year with reduced soil water availability”. Agric Meteorol 148(10): 1508-1523.

Kimball BA, Bernacchi CJ 2006. Evapotranspiration, canopy temperature, and plant water relations. In Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H Eds, Managed Ecosystems and CO2. Ecological Studies (Analysis and Synthesis), vol 187. Springer, Berlin, Heidelberg.

Koen DR, Guy S 1997. The IAGL Land Surface Model. J Appl Meteorol 36(2): 167-182.

Kulmala L, PumpanenJ, Kolari P, Dengel S, Berninger F, Köster K, Matkala L, Vanhatalo A, Vesala T, Bäck J 2019. Inter- and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agricult Forest Meteorol 271: 1-11.

Liane J, Mingbin H 2015. Evapotranspiration Estimation for an Oasis Area in the Heihe River Basin Using Landsat-8 Images and the METRIC Model. Water Res Manage 29(14).

Manninen AJT, Marke MJ, Tuononen E, Connor JO 2018. Atmospheric boundary layer classification with Doppler Lidar. J Geophys Res Atmos 123: 8172-8189.

Mattar C, Durán-Alarcón C, Jiménez-Muñoz JC, Santamaría-Artigas A, Olivera-Guerra L, Sobrino JA 2015. Global Atmospheric Profiles from Reanalysis Information (GAPRI): a new database for earth surface temperature retrieval. Int J Remote Sensing.

Matteucci M, Gruening, C, Goded Ballarin I, Seufert G, Cescatti A 2015. Components, drivers and temporal dynamics of ecosystem respiration in a Mediterranean pine forest. Soil Biol Biochem 88: 224-235.

Moisseev D, Lautaportti S, Alku L, Tabakova K, O’Connor EJ, Leskinen M, Kulmala M 2019. Inadvertent localized intensification of precipitation by aircraft. J Geophys Res Atmos 124(4).

Montheith JL, Unsworth MH 1990. Principles of environmental physics. Edition ADWARD Arnold: 287 p.

Parveen S, Fatemeh E, Balraj S, Siraj MP 2020. Model-based soil temperature estimation using climatic parameters: the case of Azerbaijan Province, Iran. Geol Ecol Landscapes 4(3): 203-215.

Rivalland V, Calvet JC, Berbigier P, Brunet Y, Granier A 2005. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect. Ann Geophys Eur Geosci Union 23(2): 291-304.

Rui L, Andrey S, Xiaofan Y, Shaomin L, Tongren X, Junjie Z 2020. Investigating microclimate effects in an oasis-desert interaction zone. Agricult Forest Meteorol 290(15): 107992.

Sellami MH 2008. A scientific guide for agricultural water management and biodiversity conservation inside the North African Oasis. Chapter in the book “Agricultural Water Management Research Trends”. Magnus L, Sorensen (Eds). Nova Science Publishers.

Sellami MH 2020. Analyse des interactions sols, plantes atmosphère à l’intérieur des oasis. Outils de base pour la modélisation des échanges de rayonnement, d’énergie et de masse à l’intérieur des cultures mixtes. Éditions Universitaires Européennes: 133 p.

Sellami MH, Sifaoui MS 1998. Measurements of microclimatic factors inside the oasis: interception and sharing of solar radiation. Renewable Energy 13(1): 67-76.

Sellami MH, Sifaoui MS 1999. Modelling solar radiative transfer inside the oasis. Experimental validation. J Quantit Spectrosc Radiat Transfer (63): 85-96.

Sellami MH, Sifaoui MS 2003. Estimating transpiration in an intercropping system: Measuring sap-flow inside the oasis. Agricult Water Manage 59(3): 191-204.

Sellami MH, Sifaoui MS 2008. Modelling of heat and mass transfer inside a traditional oasis. Experimental validation. Int J Ecol Modell 210: 144-154.

Sheng Z, Jiang Y, Wan L, Fan ZQ 2015. A study of atmospheric temperature and wind profiles obtained from rocket sondes in the Chinese mid latitude region. J Atmos Oceanic Technol 32(4): 722-735.

Stella P, Lamaud E, Brunet Y, Bonnefond JM, Loustau D, Irvine M 2009. Simultaneous measurements of CO2 and water exchanges over three agroecosystems in South-West France. Biogeosci Discus 6: 2489-2522.

Stull RB 1988. An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht/Boston/London.

Talla CF, Njomo D, Cornet C, Dubuisson P, Nguimdo LA 2018. ECMWF Atmospheric profiles in Maroua, Cameroon: analysis and overview of the simulation of downward global solar radiation. Atmosphere 9(2): 44.

Theeuwes NE, Barlow J.F, Teuling AJC, Grimmond SB, Simone Kotthaus S 2019. Persistent cloud cover over mega-cities linked to surface heat release. npj Clim Atmos Sci 2(15).

Tiba H, Dhawadi L, Sellami MH 2020a. Approche de modélisation pour l’analyse de l’efficacité de la technique d’irrigation par micro-jets dans les oasis de Nefzawa. Mise en équation et validation. J Int Sci Techn Eau Environ 5(2): 55-61.

Tiba H, Sellami MH, Dhaouadi L 2020b. Conception and sizing of a solar power farm for the running of localized irrigation systems inside Nefzawa oasis. The 11th International Renewable Energy Congress (IREC 2020) ©2020 IEEE.

Tournebize R, Sinoquet H 1995. Light interception and partitioning in a shrub/grass mixture. Agricult Forest Meteorol 72: 277-294.

Zhao L, Zhao W 2014. Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River. Northwest China. J Arid Land 6: 529-539.

Similar Articles

You may also start an advanced similarity search for this article.