Comparative study between toxic effects of newly synthesized aminophosphates (AP) and glyphosate on fresh-water ciliates model; Paramecium tetraurelia

Main Article Content

I. Namane
H. Berrebb Ah
M. Berredjem
A. Bouzina
M. Laouabdia-Selami
K. Belhamzaoui

Abstract

Synthetic aminophosphates are a class of organophosphorus compounds commonly used for protecting crops, however, the toxic effects on terrestrial and aquatic non-target organisms limit their uses. Freshwater protozoan ciliate, Paramecium tetraurelia was used as an alternative cellular model to evaluate the cytotoxic effects of aminophosphates. The present study was therefore, aimed to compare the toxic effects of two newly synthesized aminophosphates (Ap1 at 30 & 60mM and Ap2 at 40 & 60mM) and glyphosate (0.66mM), a commercialized pesticide in Algeria, on growth and major cellular antioxidant makers (GSGSH, GSGST, and CAT) in Paramecium tetraurelia. The median lethal concentration (LC50) values of Ap1, Ap2, and glyphosate were preliminarily determined. The test chemicals caused marked disruption in Paramecium kinetic growth and the cellular behavior including the trajectory and motility velocity and decreased percentage of response. In addition, the GSGSH level, and the enzymatic activity of GAT and GSGST were significantly decreased in treated cells. The observed adverse effects were less pronounced in Ap1 and Ap2 as compared with glyphosate-treated cells. Conclusively, the Ap1 and Ap2 proved to be promising lesser toxic and safer compounds than glyphosate on protozoan ciliate, Paramecium tetraurelia.

Article Details

How to Cite
Comparative study between toxic effects of newly synthesized aminophosphates (AP) and glyphosate on fresh-water ciliates model; Paramecium tetraurelia. (2024). Life and Environment, 73(1/2), 25-33. https://doi.org/10.57890/
Section
Articles

References

Aebi H 1984. Catalase in vitro. Meth Enzymol 185: 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Amanchi NR, Hussain MM 2010. Cytotoxicity assessment of monocrotophos in Paramecium caudatum and Oxytricha fallax. J Environ Biol 31: 603-607.

Azzouz Z, Berrebbah H, Djebar MR 2011. Optimization of Paramecium tetraurelia growth kinetics and its sensitivity to combined effects of azoxystrobin and cyproconazole. Afr J Microbiol Res 5: 3242-3250. https://doi.org/10.5897/AJMR11.322

Bálint E, Keglevich G 2016. Synthesis of ethyl octyl α-aminophosphonate derivatives. Curr Org Synth 13: 638-645. https://doi.org/10.2174/1570179413666151218202757

Benbouzid H, Berrebbah H, Berredjem M, Djebar MR 2012. Toxic effects of phosphoramidate on Paramecium sp. with special emphasis on respiratory metabolism, growth, and generation time. Toxicol Environ Chem 94: 557-565. https://doi.org/10.1080/02772248.2012.655696

Bouzina A, Aouf N, Berredjem M 2016. Ultrasound assisted green synthesis of α-hydroxyphosphonates under solvent-free conditions. Res Chem Intermed 42: 5993-6002. https://doi.org/10.1007/s11164-015-2420-8

Croute F, Vidal S, Dupouy D, Soleilhavoup JP, Serre G 1985. Studies on catalase, glutathione peroxidase and superoxidismutase activities in aging cells of Paramecium tetraurelia. Mech Ageing Dev 29: 53-62. https://doi.org/10.1016/0047-6374(85)90046-6

Dake SA, Raut DS, Kharat KR, Mhaske RS, Deshmukh SU, Pawar RP 2011. Ionic liquid promoted synthesis, antibacterial and in vitro antiproliferative activity of novel α-aminophosphonate derivatives. Bioorg Med Chem Lett 21: 2527-2532. https://doi.org/10.1016/j.bmcl.2011.02.039

Devineni SR, Doddaga S, Donka R, Chamarthi NR 2013. CeCl3· 7H2O-SiO2: Catalyst promoted microwave assisted neat synthesis, antifungal and antioxidant activities of α-diaminophosphonates. Chinese Chem Lett 24: 759-763. https://doi.org/10.1016/j.cclet.2013.04.037

Di Giulio RT, Washburn PC, Wenning RJ, Winston GWgw, Jewell CS 1989. Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environ Toxicol Chem 8: 1103-1123.

Finney DJ 1952. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve, Cambridge university press, Cambridge.

Habig WH, Pabst MJ, Jakoby WB 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249: 7130-7139.

Hellal A, Chafaa S,Touafri L 2016. An eco-friendly procedure for the efficient synthesis of diethyl α-aminophosphonates in aqueous media using natural acids as a catalyst. Korean J Chem Eng 33: 2366-2373. https://doi.org/10.1007/s11814-016-0098-2

Jones Jr GSgs, Daly JS 1993. Antibacterial organophosphorus compounds: phosphoranilidohydrazones of 5-nitro-2-furaldehyde. J Pharm Sci 82: 755-757. https://doi.org/10.1002/jps.2600820716

Kraicheva I, Bogomilova A, Tsacheva I, Momekov G, Momekova D,Troev K 2010. Synthesis, NMR characterization and in vitro cytotoxicity evaluation of new poly (oxyethylene aminophosphonate)s. Eur J Med Chem 45: 6039-6044. https://doi.org/10.1016/j.ejmech.2010.10.002

Kraicheva I, Tsacheva I, Vodenicharova E, Tashev E, Tosheva T, Kril A, Topashka-Ancheva M, Iliev I, Gerasimova T, Troev K 2012. Synthesis, antiproliferative activity and genotoxicity of novel anthracene-containing aminophosphonates and a new anthracene-derived Schiff base. Bioorg Med Chem 20: 117-124. https://doi.org/10.1016/j.bmc.2011.11.024

Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Daam MA, Rocha O & Seleghim MHR 2020. Individual and mixture toxicity of carbofuran and diuron to the protozoan Paramecium caudatum and the cladoceran Ceriodaphnia silvestrii. Ecotoxicol Environ Saf 201: 110829. https://doi.org/10.1016/j.ecoenv.2020.110829

Minogue PJ & Thomas JN 2004. An α-tocopherol dose response study in Paramecium tetraurelia. Mech Ageing Dev 125: 21-30. https://doi.org/10.1016/j.mad.2003.10.008

Miyoshi N, Kawano T, Tanaka M, Kadono T, Kosaka T, Kunimoto M, Takahashi T, Hosoya H 2003. Use of Paramecium species in bioassays for environmental risk management: determination of IC50 values for water pollutants. J Health Sci 49: 429-435. https://doi.org/10.1248/jhs.49.429

Nalecz-Jawecki G, Demkowicz-Dobrzainski K, Sawicki J 1993.Protozoan Spirostomum ambiguum as a highly sensitive bio¬indicator for rapid and easy determination of water quality.Sci Total Environ 134: 1227-1234.https://doi.org/10.1016/S0048-9697(05)80128-7

Ossana NA, Pérez-Iglesias JM, Soloneski S, Larramendy ML2019.Auxinic herbicides induce oxidative stress on Cnesterodon decemmaculatus (Pisces: Poeciliidae).Environ Sci Poll Res 26: 20485-20498.https://doi.org/10.1007/s11356-019-05169-z

Prokop’ev IA, Kan MU 2020.Cytotoxicity of potassium salts of (+)-and (-) usnic acid for Paramecium caudatum.Bull Exp Biol Med 169: 110-113.https://doi.org/10.1007/s10517-020-04835-4

Ramzan U, Shakoori FR, Shakoori AR, Abbas SZ, Wabaidur SM, Eldesoky GE, Islam MA, Rafatullah M 2022.Biodegra¬dation and decolorization of Reactive Red 2 azo dye by Paramecium jenningsi and Paramecium multimicronuclea¬tum in industrial wastewater.Biomass Conv Bioref.https://doi.org/10.1007/s13399-022-02817-2

Rao JV, Srikanth K, Arepalli SK, Gunda VG2006.Toxic effects of acephate on Paramecium caudatum with special emphasis on morphology, behaviour, and generation time.Pestic Bio¬chem Physiol 86: 131-137.https://doi.org/10.1016/j.pestbp.2006.02.005

Rao JV, Arepalli SK, Gunda VG, Kumar JB 2008.Assessment of cytoskeletal damage in Paramecium caudatum: an early warning system for apoptotic studies.Pestic Biochem Physi¬ol 91: 75-80.https://doi.org/10.1016/j.pestbp.2008.01.004

Saib A, Berrebbah H, Berredjem M, Djebar MR 2014.Cytotoxic study of three derivatives amidophosphonates on alternative cellular model: Paramecium tetraurelia.Toxicol Res 3: 395-399.https://doi.org/10.1039/C4TX00033A

Sander T 2001.OSIRISProperty Explorer.Organic Chemistry Portal.https://www.organic-chemistry.org/prog/peo

Sara H, Rachid R, Salim G, Aml A, Amna A, Aya S, Nadjiba T, Chahinez T, Zina B, Hajer C 2016.Oxidative stress status, caspase-3, stromal enzymes and mitochondrial respiration and swelling of Paramecium caudatum in responding to the toxicity of Fe3O4 nanoparticles.Toxicol Environ Health Sci 8: 161-167.https://doi.org/10.1007/s13530-016-0273-1

Tajti Á, Keglevich G2018.The importance of organophospho¬rus compounds as biologically active agents.Organophos¬phorus Chem: 53-65.https://doi.org/10.1515/9783110535839-003

Trela Z, Kleszczyńska H, Sarapuk J 2001. Physiological and hemolytic toxicity of some aminophosphonates.ZNatur¬forsch C 56: 838-842.https://doi.org/ 10.1515/znc-2001-9-1026

Tushmalova NA, Lebedeva NE, Igolkina YV, Sarapultseva EI 2014.Spirostomum ambiguum as a bioindicator of aquatic environment pollution.Moscow Univ Biol Sci Bull 69: 67-70.https://doi.org/10.3103/S0096392514020138

Twardowska I, Stefaniak S, Allen HE, Häggblom MM 2007.Soil and water pollution monitoring, protection and remedia¬tion.Springer Sci Buss Media.https://doi.org/10.1007/978-1-4020-4728-2

Upadhyay LSB, Dutt A 2017.Microbial detoxification of resid¬ual organophosphate pesticides in agricultural practices.Microb Biotechnol: 225-242.https://doi.org/10.1007/978-981-10-6847-8_10

Venkateswara JR, Gunda VGvg, Srikanth K, Arepalli SK 2007. Acute toxicity bioassay using Paramecium caudatum, a key member to study the effects of monocrotophos on swimming behaviour, morphology and reproduction. Toxicol Environ Chem 89: 307-317. https://doi.org/10.1080/

Weckbecker G, Cory JG 1988. Ribonucleotide reductase activity and growth of glutathione-depleted mouse leukemia L1210 cells in vitro. Cancer Lett 40: 257-264. https://doi.org/10.1016/0304-3835(88)90084-5

Wong CKC, Cheung RYH, Wong MH 1999. Toxicological assessment of coastal sediments in Hong Kong using a flagellate, Dunaliella tertiolecta. Environ Poll 105: 175-183. https://doi.org/10.1016/S0269-7491(99)00027-5

Zhang S, Li Y, Zhang T, Peng Y 2015. An integrated environmental decision support system for water pollution control based on TMDL – A case study in the Beiyun River watershed. J Environ Manage 156: 31-40. https://doi.org/10.1016/j.jenvman.2015.03.021