
INTRODUCTION

Rocky coastal habitats represent a quantitatively small 
portion of the marine environment in comparison to the 
spatial extent of the soft bottoms; however, they support 
the highest proportion of marine biodiversity (Steneck et 
al. 2002, Wieters et al. 2003, Bianchi et al. 2004, Wahl 
2009). Marine hard bottoms are complex habitats where 
monitoring protocols vary considerably (Van Rein et al. 
2009, Beisiegel et al. 2017). The choice of methodology 
has strong implications for the efficiency of the sampling, 
the monitoring efforts and analysis; the level of precision, 
the time spent in the field, etc. (Hewitt et al. 2001, Smale 
et al. 2012, Beisiegel et al. 2017). The final selection of 
methodology is done as necessary involving various prac-
tical considerations, such as: the time and the budget avail-
able to sort and identify the samples; the inherent com-
plexity of the habitats studied (depth, hydrodynamism, 
topological heterogeneity, environmental conditions in 
general, etc.); the difficulty in handling the quadrat or any 
other tool used to delimit the sampling unit; among many 
others. In any case, being conscious of the strengths and 
the weaknesses of a selected methodology is important for 
interpreting the results of studies within reasonable limits. 
Here we review, together with the problems of sampling 
in marine hard bottoms, the main approaches used in the 
study of this type of habitat assessing some of their main 

advantages and disadvantages (Table I), and highlighting 
a few explored alternatives where the sampling effort is 
controlled through a set period of sampling time.

Unlike sedimentary habitats, marine hard bottoms 
are highly heterogeneous (cliff, caves, crevices, reefs, 
big rocks, etc.) (Bianchi et al. 2004, Bulleri & Chapman 
2004, Fraschetti et al. 2005), and they are inhabited by 
highly heterogeneous communities at many spatial scales, 
from hundreds of kilometers to centimeters (Archambault 
& Bourget 1996, Blanchard & Bourget 1999, Fraschetti et 
al. 2001, Anderson et al. 2005a). There is a wide range of 
sizes and forms (and consequently, densities) among the 
benthic species of a hard bottom community: solitary or 
modular, from small organisms (few millimeters) to large 
erected colonies, epibionts, encrusting, mobile fauna, etc. 
(Gray 1997, Bianchi et al. 2004, Wahl 2009). This fact 
can present considerable difficulties to obtain accurate 
and statistically comparable data for community monitor-
ing (Munro 2005, Van Rein et al. 2009). The high diver-
sity and heterogeneity of the hard bottom habitats imply 
difficulty for studying biological communities since every 
sample should represent the studied community (Hurlbert 
1984, Underwood 1997, Quinn & Keough 2002, Bene-
detti-Cecchi 2003, Murray et al. 2006a). For these rea-
sons, it is very difficult to study all components of hard 
bottom benthic communities; the available methodolo-
gies rarely allow the gathering of representative samples 
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for all components and, in practice, the researchers often 
select only a part of the whole community. This selection 
can be made based on different criteria: taxonomy, sizes, 
trophic groups, life forms, to study only visually detect-
able organisms, etc. nevertheless, even if the research-
ers resolve to study only a part of the whole community, 
there is another crucial decision: the type and size of the 
sampling unit. 

Plots of standardized areas

A common option is to use a standardized sampling 
unit (quadrat, rectangles, circles, etc.) with a dimension 
that allows a precise quantification of all organisms with-
in this unit, typically 1 × 1 m, 50 × 50 cm, 25 × 25 cm, 
etc. It is usually assumed that this method allows a pre-
cise estimation of abundance and density in the commu-
nity. Using this method, samples usually do not represent 
fully the whole species and microhabitat diversity of 
a given area (except, perhaps in the simplest communi-
ties) (Chapman & Bulleri 2003, Bulleri et al. 2005, pis-
ter 2009), due to under-sampling of uncommon and rare 

species (dethier et al. 1993, Miller & Ambrose 2000, 
Murray et al. 2006a). Several authors recorded this fact 
for benthic hydroid assemblages (Boero & Fresi 1986, 
piraino et al. 2013). This approach is a standard meth-
odology widely used in marine ecology (Cochran 1977, 
Munro 2005, Murray et al. 2006b, Thompson 2012), but 
it ignores the problems that derive from unrepresentative 
samples, unless for a part of the community. For example, 
unrepresentative samples can often result in high vari-
ability (high dispersion) between samples. In these cases, 
it could be more difficult to find patterns and ultimately, 
the null hypothesis may be retained when it could be false 
(Type error II) (Underwood & Chapman 2003, Murray et 
al. 2006a). 

one additional source of imprecision in this method-
ology is the fact that plots and quadrats only have two 
dimensions and cover an area of substratum that frequent-
ly is highly heterogeneous in three dimensions. Thus, the 
real sampling area under the projection of a sampling 
quadrat is unknown, variable and greater than the quad-
rat area itself (Murray et al. 2006b). Furthermore, in very 
heterogeneous habitats such as marine hard bottoms, 

Table I. – Main characteristics of different methodologies in marine hard bottoms.

Method Advantages Disadvantages

Standardized small sampling unit. Scraping 
the whole surface in the sampling unit

Precise quantification of the organisms in 
sampling unit

Does not represent the whole species and 
microhabitat diversity 

It facilitates the between site and between 
studies comparisons, regardless of 
different collectors

High sorting time

Image capture. Video and Photo survey

Rapid rate of data collection and low cost Not particularly suitable for mobile fauna or 
erected organisms

Permanent record of the samples Many organisms cannot be identified only 
by image or visually

No impact on ecosystem

Repeatability

Underwater work fast

Combination of quadrats and semi-
quantitative estimation of abundance

Can deal with large sampling units Not a precise quantification of all 
organisms inside each sampling unit

It considers both modular and individual 
organisms

Usually, only suitable for visually 
identifiable organisms

Rapid Assessment Survey

It is a non-destructive methodology 
because it is mainly qualitative

Not a precise quantification of the 
organisms

It is not restricted to a specific sampling 
unit

Risks of subjectivity in taxonomy (It is 
necessary a previous training)

Large sampling areas can be surveyed Usually, the primary aim is to detect only 
alien species

Low cost

Time-constrained sampling

Good representation of species diversity, 
detection of inconspicuous and rare 
species 

Not a precise quantification of all 
organisms inside each sampling unit

Large sampling unit can be sampled and 
processed in laboratory

It is necessary a previous training

The quantification of taxa in laboratory 
allow their abundance to influence the 
results
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the selection of the precise position of the frame can be 
crucial. This fact could lead the researcher to choose the 
position of the sampling units by avoiding crevices, big 
rocks or some other microhabitats that could make the 
sampling protocol more complicated. This is, in prac-
tice, a selection of a part of the community that is seldom 
documented in the methods. If the objective is to sample 
the complete community, the randomization of sampling 
unit placement ensures that estimations are unbiased and 
that statistical inferences are reliable (Quinn & Keough 
2002). However, the use of these sampling units can often 
be complicated, for instance, if a unit falls in a deep crev-
ice. A non-random (or at least haphazard) sample makes it 
difficult to extrapolate accurate results or to even obtain 
general conclusions.

Increasing the sampled area

Researchers can use different strategies to obtain a 
more comprehensive representation of microhabitats and 
rare species, such as increasing the number and/or size of 
the sampling units (i.e., increasing the sampling effort) 
(Chapman 2003, Murray et al. 2006b). The first option, 
enlarging the number of samples, does not involve enlarg-
ing the representation of taxa in each sampling unit. The 
variability among sampling units within the cells of the 
experimental design can be large, which can pose some 
difficulties in subsequent analyses. But, unless, the proba-
bility of finding and representing different types of micro-
habitats and associated organisms increases with a greater 
number of samples.

In any case, bigger and/or more numerous samples 
cannot be sorted in a quantitative manner without a much 
larger (and probably unpractical) effort (Chapman 2003, 
piraino et al. 2013), and they are sometimes processed on 
a presence/absence basis without comparison of relative 
abundances (Chapman 2003, Chapman & Bulleri 2003, 
people 2006, Glasby et al. 2007, pister 2009). only for 
large and visually classifiable organisms do the use of 
large sampling areas properly represent the spatial het-
erogeneity and are compatible with a precise quantifica-
tion (for instance, nadon & Stirling 2005, Villegas et al. 
2008, Cúrdia et al. 2013). Another important point is that, 
in subtidal studies, an increment of the sampling effort is 
limited by scuba diving time, particularly at depths great-
er than 15-20 m. Furthermore, a complete collection for 
such a large surface area would make the sampling very 
destructive, which should be generally avoided and would 
be unacceptable in Marine protected Areas. For this rea-
son, where the organisms under study are visually clas-
sifiable (to the categorical level chosen), a non-extractive 
sampling could be used. 

Sampling using image capture has grown in the last 
years (video, photo, etc.) (Kohler & Gill 2006, Van Rein 
et al. 2011, 2012, Howarth et al. 2015). The benefits of 
this methodology are mainly its rapid rate of data collec-

tion and low cost, as well as the ability to create a perma-
nent record of the samples, and the possibility of collect-
ing repeated samples through time (Underwood & Jack-
son 2009). However, many erect organisms (such as algae 
canopies, large colonies of hydroids, gorgonians, corals, 
etc.) have a three dimensional development with pro-
jections, secondary stems, etc., and they can overlie the 
organisms attached to the primary substratum (Bianchi et 
al. 2004, Underwood & Jackson 2009), which could eas-
ily be underestimated. In addition, these methods are not 
particularly suitable for mobile fauna. Furthermore, many 
organisms cannot be identified only by image or visually, 
either because of the level of classification chosen, it is 
necessary that their observation is carried out under ste-
reoscope and microscope (e.g., spicules of sponges, nem-
atocysts of hydroids, zooidal aperture in cheilostomate 
bryozoans, etc.), and/or because they are too small (such 
as a few millimeters in size). In these cases, as well as for 
the study of infaunal species inhabiting rocks, biogenic 
structures or other organisms (such as kelp holdfasts), an 
extractive sampling method is required (Thiel & Vásquez 
2000, Anderson et al. 2005b, Sato-okoshi et al. 2008, 
Tuya et al. 2011). 

NEW APPROACHES TO DEAL WITH LARGE 
SAMPLING UNITS

As stated before, to obtain samples that reasonably 
represent microhabitats and species diversity in highly 
heterogeneous hard bottom environments, it is necessary 
to explore a rather large area. However, it can be very dif-
ficult (and often impractical) to obtain, sort and quantify 
these samples using traditional extractive methods (scrap-
ing the whole surface or collecting every single specimen 
in the explored area).

To address this problem, some authors have developed 
methodologies for faster quantification using a combi-
nation of quadrats and a semi-quantitative estimation of 
abundance (see Fraschetti et al. 2001, Bianchi et al. 2004, 
parravicini et al. 2010, Airoldi et al. 2015). These method-
ologies consider both modular and individual organisms. 
large sized organisms can easily be counted in more than 
one subquadrat, as well as smaller but more abundant 
ones. other semi-quantitative methods are the “SACFoR-
type” methodologies (Connor et al. 2004, Fariñas-Franco 
& Roberts 2013). These methodologies provide an ordinal 
estimation (ordered categories) of the relative abundance 
of the organisms. Although these semi-quantitative meth-
odologies are often only suitable for visually identifiable 
organisms, they are valid and useful in the study of hard 
bottom benthic communities. 

In addition to these semi-quantitative methodologies, 
some authors propose the use of visual techniques that 
reduce the sampling time but ensure a sufficient represen-
tation of the diversity of organisms (Boero & Fresi 1986, 
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piraino et al. 2013). This methodology often implies prior 
selection of certain components of the community; these 
authors developed this methodology specifically for ben-
thic hydroids, and it was further used by several authors in 
temperate and tropical zones (di Camillo et al. 2008, puce 
et al. 2009, González-duarte et al. 2013, 2016, Megina 
et al. 2013). Several authors have pointed out that visual 
samplings are robust with regard to the error induced by 
operators (dethier et al. 1993, Benedetti-Cecchi et al. 
1996, piraino et al. 2013). This methodology provides a 
good representation of species diversity, sampling incon-
spicuous and rare species (Boero & Fresi 1986, Murray et 
al. 2006b, González-duarte et al. 2013, 2016, Megina et 
al. 2013, piraino et al. 2013). These rare species could be 
essential in the characterization of communities and eco-
systems (Boero 1994, piraino et al. 2013). Moreover, this 
methodology provides an estimation of the abundance 
of the organisms under study, which would otherwise 
be impossible to process because of the large size of the 
sampling unit. 

A way to make this methodology more standardiz-
able is to constraint the sampling effort by previously 
established times, a methodology that has not been much 
explored in marine benthic studies, specially in subtidal 
habitats. Time-constrained searches have been routinely 
used in terrestrial ecological studies (Corn & Bury 1990, 
Will-Wolf et al. 2002, Berryman & McCune 2006, Marsh 
2009). The sampling is carried out in a large sampling 
area during a precise previously defined time period. The 
time should be long enough to ensure a good qualitative 
and quantitative representation of the community studied 
but not so long that all organisms present are sampled; 
this methodology is practically applicable. By means 
of a preliminary study, an optimal sampling time can be 
defined according to the objectives (assessment of the 
biodiversity, trophic groups, assemblages compositions, 
etc.). Indeed, some authors have already used an approxi-
mation of this methodology. For example, in the study of 
the sessile communities associated with marinas, several 
authors carried out a time-constrained sampling for ben-
thic ascidians (Airoldi et al. 2015) and benthic hydroid 
assemblages (Megina et al. 2016). Cohen et al. (2005) 
used this methodology for sampling the complete benthic 
hard bottom community in commercial ports. 

Actually, in the context of bioinvasion studies, some 
authors have also developed methodologies for a faster 
sampling of benthic community associated to floating 
pontoons, marinas and artificial habitats in estuarine 
zones (Arenas et al. 2006, Ashton et al. 2006, Campbell 
et al. 2007, Bishop et al. 2015, nall et al. 2015). In this 
methodology, names as Rapid Assessment Survey, previ-
ously trained sampling teams survey the benthic commu-
nity in the study zone during a pre-defined sampling time 
(Arenas et al. 2006, Bishop et al. 2015). This method can 
be strictly visual sampling (Campbell et al. 2007), some 
specimens can be collected for laboratory identification 

of species (Arenas et al. 2006) or including a semi-quan-
titative estimation of abundance of each species encoun-
tered (Bishop et al. 2015). Furthermore, the sampling 
team may define some target species (e.g., alien species) 
(Minchin et al. 2006, Minchin 2012, nall et al. 2015) and 
to focus on, instead of the whole community.

González-duarte et al. (2013), in the study of benthic 
hydroid assemblages in well preserved natural zones, 
also carried out an approximation of this methodology. 
Samples are collected by SCUBA divers along transects 
of 25 m in length. each transect is subdivided in five large 
rectangular sampling unit with a width visually controlla-
ble by a diver (1 m) and a length of 5 m, where previously 
trained divers swim at constant speed. The sampling time 
on each sampling unit is defined previously. The opera-
tors collect while swimming all substrates or potential 
substrates for hydroids (for instance algae, barnacles, 
sponges, etc.), as well as detectable colonies and patch-
es of colonies they could detect in the time previously 
defined. later, the total number of colonies collected is 
sorted and counted for each sampling unit. This method-
ology provides a good representation of species diversity, 
sampling inconspicuous and rare species (Boero & Fresi 
1986, González-duarte et al. 2013, 2016, Megina et al. 
2013, piraino et al. 2013). González-duarte et al. (2013, 
2016) sampled the 52 % of all leptothecata species, 
with a know benthic phase, described for the Mediterra-
nean Sea and the Strait of Gibraltar, and the 21 % of all 
Anthoathecata species (see Bouillon et al. 2004). Thus, 
this methodological line could be an acceptable alterna-
tive that would be worth to explore further and it can thus 
be chosen for study marine hard bottom communities on 
large areas.

a priori, these new approaches for the study of marine 
hard bottoms may seem less accurate and less precise in 
the quantification of the components of the samples than 
those more standardized and common methodologies 
(e.g., small and manageable sampling units). neverthe-
less, most studies about benthic communities analyze the 
obtained data of abundances after a square root, fourth 
root or log transformation (Connell & Glasby 1999, Glas-
by & Connell 2001, Fraschetti et al. 2002, Anderson et 
al. 2004, Walker & Schlacher 2014, Uribe et al. 2015). 
This converts the precise quantitative information in a 
kind of semi-quantitative data scale. For example, a range 
of abundances between 0 and 700 individuals will be 
reduced by approximately 0-26.5 in a square root trans-
formation; 0-5.1 in a fourth root transformation and 0-6.6 
in a log transformation. differences between 600 and 700 
individuals in two species would be reduced by a differ-
ence of 24.5 to 26.5 in a square root transformation, by 
4.9 to 5.1 in a fourth root transformation and by 6.4 to 6.6 
in a log transformation. This is a standard procedure in a 
biological study that either uses euclidean distance as a 
measure of dissimilarity or a Bray-Curtis index (Ander-
son 2001, Clarke & Warwick 2001, legendre & Gallagh-



 TIMe-ConSTRAIned SAMplInG 145

Vie milieu, 2020, 70 (2)

er 2001, Chapman & Bulleri 2003, Clarke et al. 2006, de 
Cáceres et al. 2013). Consequently, obtaining strictly pre-
cise and detailed quantitative information about the cov-
ers or abundances of every taxa is probably less important 
when we transform the data to reduce the effects of spe-
cies with high abundances.

CONCLUSIONS

Marine hard bottom habitats and communities have a 
high heterogeneity at different spatial scales (Blanchard 
& Bourget 1999, Bulleri & Chapman 2004, Fraschetti et 
al. 2005) and it is often difficult to obtain robust scientific 
information from them. The almost invariable occurrence 
of interactions between factors at different scales makes 
it difficult to extract the ecological patterns governing the 
functioning of these interesting habitats (Underwood & 
Chapman 1996, 1998, Chapman 2003, Chapman & Bul-
leri 2003, Bulleri & Chapman 2004, pister 2009), and 
sometimes, the differences between the communities are 
never evident (Chapman 2006, pister 2009). every meth-
odology used in the study of hard benthic communities 
needs to make several decisions: which part of the com-
munity to study, the variable used to quantify it, the size 
and number of sampling units, etc. There are advantages 
and disadvantages associated with every sampling meth-
od (Benedetti-Cecchi et al. 1996), and the most appro-
priate sampling methodologies depend on the objectives 
of the study. The use of the methodology described here 
(Time-constrained sampling for a large sampling unit) 
in a comparative study depends on the maintenance of a 
homogeneous sampling effort, which, in its turn, depends 
on the intervention of the same previously trained sam-
pling team. Thus, the specific data obtained by this meth-
odology could be difficult to compare with other stud-
ies, although the global trends and conclusions could be 
comparable. nevertheless, this methodology presents a 
good cost-benefit balance: it provides a good represen-
tation of the diversity of hard bottom communities and 
the costs (both in time and economic resources) for sam-
pling and sorting are lower and the quantification of taxa 
allows their relative abundance to influence the results. 
This methodological line, already used by some research-
ers, could be an acceptable alternative that could thus be 
chosen for studying marine hard bottom communities and 
would be worth exploring further.
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