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ABSTRACT. — The spatial distribution and species richness of ichthyoplankton have been
investigated using samples from two commercially important fishing areas of the North Aegean
Sea (Thermaikos and Chalkidiki Gulfs, East Mediterranean Sea) in June 2004, 2005 and 2006.
A total of 62 taxa were identified in this study something which is in agreement with other rele-
vant studies of a wider spatial scale in the East and West Mediterranean Sea. The horizontal dis-
tribution of fish larvae was spatially segregated. Epipelagic, mesopelagic and demersal taxa
occupied different geographical areas. Species richness and larvae abundance were significantly
positively correlated with depth. Three ecological indicators, total taxa abundance, species rich-
ness and Shannon-Wiener diversity, were used to measure the diversity of the two areas. The
relationship between environment and ichthyoplankton was tested with permutational multivar-
iate analysis of variance using seven environmental factors as predictors. Topography and the
physicochemical factors salinity and depth-integrated chlorophyll-a constitute the main factors
affecting species richness of our study area. Analysis of similarities showed significant differ-
ences between the biocommunities in the span of the three years. The Chalkidiki area showed
higher species richness and Shannon-Wiener diversity than the Thermaikos area, something,
which is probably due to the different characteristics of water masses and also due to the variety
of benthic habitats that Chalkidiki offers. Notably, in the Thermaikos Gulf, European anchovy
and Round sardinella exhibited a strong domination pattern while mesopelagic larvae abun-
dance and occurrence was higher at the deeper Chalkidiki area. Physicochemical parameters

affected biodiversity by creating favorable conditions for adult spawning.

INTRODUCTION

Ichthyoplankton studies are important in fisheries biol-
ogy. They contribute to a better knowledge of an area’s
ichthyofauna biodiversity (Siapatis et al. 2000). An ich-
thyoplankton sample can contain the early life stages of
a wide spectrum of fish taxa whose adults may belong to
different ecological niches. Biodiversity metrics provide
insight on the status of an assemblage or community at a
point in time (Marshall ez al. 2019). In fisheries science,
ichthyoplankton has been used as an index of ecological
quality reflecting environmental impacts and for stock
management (Edwards et al. 2010).

Horizontal distribution of early development stages
of fish larvae can reflect the spawning bathymetry of
adults (Somarakis er al. 2002) as they adapt to the pelag-
ic environment. Furthermore, the variability of physical
processes such as changes in temperature and salinity,
fronts and currents and biological processes affect the dis-
tribution and survival of fish larvae (Olivar et al. 2010).
Horizontal distribution studies have shown that inshore
larval assemblages have a different composition to off-
shore ones (Sabatés 1990a). Diversity of adult fish habi-
tats, bathymetry, primary production, stratification of the

water column and currents interact with each other and in
combination with other factors form the final distribution
patterns of fish larvae (Sabatés e al. 2007). Fish larvae
spatial distribution patterns show differences between
species (Herndndez-Miranda et al. 2003). These patterns
may be due to biological or physical mechanisms and
this in itself constitutes a subject of research (Herndndez-
Miranda et al. 2003).

The relation of biodiversity to habitat complexity is a
crucial subject in ecology (Gratwicke & Speight 2005).
Furthermore knowledge of underlying mechanisms
behind biodiversity spatial distribution is important in
predicting the effects of anthropogenic activities on the
marine environment (Navarro et al. 2015). Relatively
high species richness and larval fish abundances have
been recorded in the past near areas that mesoscale ocean-
ographic features that enhance biological productivity
(Rodriguez et al. 2013). The niche differentiation concept
suggests that a more heterogeneous environment could
support more species through partitioned niche space
(Yang et al. 2015). However, the mechanisms leading to
the increase in B-diversity with increasing productivity
remain largely unknown; most studies to date have been
correlational (Chase 2010). Topography and environ-
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mental variables affect ichthyoplankton diversity patterns
(Sabatés & Olivar 1996, Giannoulaki ef al. 2013). The
factors that cause variation in S-diversity represent one of
the most important, but poorly understood, influences on
global variation in biodiversity (Chase 2010).

Most fish species are spawn during spring and sum-
mer in the Mediterranean Sea (Sabatés 2004, Siapatis &
Somarakis 2007, Somarakis et al. 2011a) and thus this
period is suitable for studying the distribution and bio-
diversity patterns (Sabatés et al. 2007). While the north
Aegean Sea (Eastern Mediterranean) has been studied
before as far as ichthyoplankton assemblages or fisheries
are concerned, studies on biodiversity are scarce. This is
the first study focusing on ichthyoplankton distribution
and species richness of the Thermaikos and Chalkidiki
Gulfs and the first study of ichthyoplankton diversity in
the northern Aegean Sea. The aim of our study was: (1)
to identify possible existing patterns regarding the distri-
bution of larvae, (2) to spatially locate the richer marine
areas in terms of biodiversity, using the most common
ecological indicators, and (3) to interpret any existing
biodiversity patterns using physical and biological data.

Study area

The Thermaikos and Chalkidiki Gulfs are located in
the north Aegean Sea (East Mediterranean Sea) (Fig. 1).
Thermaikos is a shallow and wide gulf with a deeper
outer part (the average depth is 50 m). Chalkidiki consists
of Toronaios and Sygkitikos Gulfs with a narrow shelf
with steep slopes and great depths (the average depth is
> 200 m). Five rivers enrich the western part of the Ther-
maikos Gulf with low salinity waters and nutrients form-
ing a complex estuary. Estuaries are productive ecosys-
tems, providing a diverse range of habitats and support-
ing fish biodiversity (Tsikliras et al. 2009). They serve
as reproduction fields and shelters for juveniles or adults
(Gillanders & Kingsford 2002).

40.5°N

Fig. 1. — Bathymetric map of the 39.5°N
study area. Ichthyoplankton sta-
tions are marked with black tri-

angles and CTD stations with —
blue dots. 22.5°E 23°E

In the Chalkidiki Gulfs, an influx of freshwater from
the east results in low-salinity surface waters extending
across the Northern Aegean during summer, as a result
of flows from the Dardanelles Strait (Hyder et al. 2002).
These low salinity surface water masses move to the
north along the coast and exit Chalkidiki Gulfs at their
southwestern part (Fig. 2). Strong north winds affect the
movement of this water. A strong but time-dependent
anticyclone is centered on the mouth of Singitikos Bay
(Olson et al. 2007). Thermaikos and Chalkidiki are usu-
ally treated as a single fishing area by Greek Authorities.
It is the second most productive fishing area in Greece
(after the Thracian Sea) and it is mainly fished by purse
seiners and trawlers (Hellenic Statistical Authority, 2016
Press Release).

MATERIALS AND METHODS

Ichthyoplankton samples were collected during three surveys
conducted in 15-20 June of 2004, 13-21 June of 2005 and 6-16
June of 2006 by the R/V “Philia” of Hellenic Center of Marine
Research. A grid of 13 stations was sampled (Fig. 1). The dis-
tance between stations was 10 nautical miles. A 60 cm bongo
with 250 and 500 um mesh nets was used as proposed by Smith
& Richardson (1977). Tows were diagonal from surface to bot-
tom or to maximal depth of 200 m while the velocity of the ves-
sel was 2-2.5 kn. Samples were preserved in 4 % formaldehyde
and boric acid solution. A CTD Seabird Electronics 25 was
used to obtain temperature, salinity and chlorophyll-a profile
data (with 1 m vertical resolution) from surface to bottom or to
maximal depth of 200 m at a denser grid of 46 stations (Fig. 1).

We analyzed samples from the 250 um net at the laboratory.
Larvae were sorted and identified to the lowest possible taxo-
nomic level using the ichthyoplankton database (Siapatis & Chi-
lari 2003). Eschmeyer’s Catalog of Fishes (Fricke et al. 2020)
was used for the scientific names of taxa as it is more complete
and is updated recently as far as nomenclature data (Updated in
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Fig. 2. — A schematic of the general circulation of the Aegean
Sea. Figure copied and modified from Olson et al. (2007). ©
American Meteorological Society. Used with permission.

3 August 2020). For data comparability purposes, tow depth was
used to transform larvae counts to abundance per 10 m?.

PRIMER-e v6 software (Clarke & Gorley 2005) was used
to calculate the following ecological indicators: number of taxa
(species richness, S), individuals number (N) and Shannon-
Wiener biodiversity index (H’ = -3*_, p/lnp’) (logarithm base
e) for each year and each area. Different indices measure differ-
ent aspects of the partition of abundance between species (Hill
1973). We used the combination of these indicators to describe
biodiversity patterns of our study area as they represent differ-
ent diversity orders (Jost 2006). Species richness is more sen-
sitive to rare species while Shannon index weighs all species
by their frequency (Jost 2006). For the estimation of individu-
als’ number and Shannon-Wiener index we used the maximum
available information from larvae taxonomy. Ecological indica-
tors were calculated without taking into consideration rare taxa
(we considered as rare all taxa that appeared at only one station
during each sampling period). Their presence can be considered
random and may affect ecological indicators presented in this
study.

The relationship between environment and ichthyoplankton
diversity was studied with Permutational multivariate analysis
of variance (PERMANOVA), to test the effect of environmental
factors on the most representative of the ecological indicators
(Anderson 2001). A distance matrix was computed from the raw
dataset using sums of squared Euclidean distances according to
the formula: S, =X/ | X7 3F_ {yp — mean(y;x)*}. A pseudo
F-ratio was calculated to test the multivariate hypothesis with
the formula: F=[SS,/(a-1)]/[SS, /(N -a)]. A P-value was
calculated with the formula: P = number of Fy = F / total num-
ber of Fp, according to Anderson 2001.

Three indicators (Species richness, larval abundance and
Shannon diversity index) were used as measures of diversity
to compare areas (Chalkidiki, Thermaikos), years (2004, 2005
and 2006), proximity to coast (close 0-3 km, medium 3-10 km

and far > 10 km), oceanic zones (neritic/oceanic), temperature
(low < 20.78 °C, high > 20.78 °C), salinity (low < 35.53, high
> 35.53) and depth-integrated chlorophyll-a (low < 3.74 mg.m™,
high > 3.74 mg.m~). Median of the three years was the bound-
ary used to categorize temperature, salinity and depth integrated
Chl-a in two categories in order to perform PERMANOVA: high
and low. Sampling stations were categorized in two distinctive
areas those of Thermaikos and Chalkidiki. Two of the stations
were located at the boundary of the two areas (Fig. 1). We final-
ly categorized them at Chalkidiki area due to their great depth,
which was a common feature of all Chalkidiki stations. Fluores-
cence data integrated over the depth of the euphotic layer were
used to calculate depth-integrated chlorophyll-a (DIchla = f<
[chla]zdz) (Morel & Berthon 1989). The neritic zone was con-
sidered as the shallow part of the study area from zero to 200m
depth and the oceanic zone as the deeper part from 200m to the
bottom. Larval abundance data were log-transformed to reduce
the importance of the most dominant taxa.

The method of backward elimination of variables was used
for the PERMANOVA (Zar 2010). Because the number of
observations was restricted (13 stations X three years), the num-
ber of factors we could use for the PERMANOVA was limited.
For this reason, we tested two factors at a time with the hypoth-
esis Hy that there are no differences between them (i.e., tempera-
ture and salinity, salinity and chlorophyll-a, etc.). At first, the
physicochemical factors (chlorophyll-a, salinity, temperature)
were tested in pairs and with their interaction as a new fac-
tor. The topographic factors (area, proximity to coast, oceanic
zones) were tested with the same procedure. If the interaction
between the two factors was found to be significant, a new PER-
MANOVA was run with the interaction included in the model
(Zar 2010). All possible combinations of factors were tested and
those factors presenting weak effects on the dependent variables
were eliminated from the model. Finally, we tested the interac-
tion between topography and physicochemical factors. This pro-
cedure was repeated until we concluded to the most important
environmental factors that could interpret best the ecological
indicators. PAST v3.25 software was used to carry out PER-
MANOVA (Hammer et al. 2001).

Analysis of similarities (ANOSIM) was used to test the
hypothesis H, that the similarities between areas and years are
equal. A ranked dissimilarity matrix from the biological data for
each year and a test statistic R were computed for this purpose
according to Clarke (1993).

We investigated the impact of depth on the ecological indi-
cators and on abundance. A simple regression model was used
relating the total abundance from each category (epipelagics,
demersal and mesopelagics) with depth. We used the square-
root transformation for all the dependent variables which
showed heteroscedasticity, especially for species richness, as
their variances were proportional to the means (Zar 2010). For
the calculation of epipelagic, demersal and mesopelagic abun-
dance, we used only the most dominant taxa (as they represent-
ed the majority of larvae abundance) and for depth descriptor,
we used the tow depth. Taxa were categorized in groups based
on adults’ habitat according to Somarakis et al. (2011b). Groups
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consisted of the most common taxa: epipelagic, demersal and
mesopelagic.

Abundance and environmental data were used to construct
maps with the aid of SURFER 8¢ software (Golden Software
2002) and Ocean Data View 5.2.0 software (Schlitzer 2016).
The krigging method (Krige 1951) was used to avoid overlap-
ping and enhance low values. Maps of the three ecological indi-
cators were constructed in order to get a more precise spatial
view of subareas that persistently presented high diversity.

RESULTS

In total 62 taxa were identified, belonging to 40 fami-
lies, while 32 taxa occurred in all the three sampling peri-
ods (Table I). The majority of larvae were identified at spe-
cies level (52 species, 5 genera, 5 families). The sampling
recorded 45 taxa belonging to 31 families in 2004, 42 taxa
belonging to 31 families in 2005 and 49 taxa belonging to
34 families in 2006. Five unique species found in 2004
(Uranoscopus scaber, Pagrus pagrus, Mullus barbatus,
Parablennius gattorugine and Vinciguerria attenuata)
were not present in 2005. Seven unique species found
in 2006 (Lepadogaster candollei, Callanthias ruber,
Buglossidium luteum, Parophidion vassali, Uranoscopus
scaber, Pagrus pagrus and Lepidopus caudatus) were not
present in 2005. From the total number of taxa identified
in all the three years, 26 are commercially important in
Greece (e.g., Engraulis encrasicolus, Sardinella aurita,
Trachurus mediterranaeus, etc.).

In 2004, the samples were dominated by larvae of
epipelagic taxa followed by larvae of mesopelagic and
demersal taxa. Engraulis encrasicolus (28.9 %), S. aurita
(24.3 %) and Ceratoscopelus maderensis (14.6 %) were
the most abundant larvae and only 0.36 % remained
unidentified. In 2005, a change in taxa composition was
observed. Mesopelagic taxa dominated and epipelagic
and demersal taxa followed. Ceratoscopelus maderensis

Epipelagi

ics
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(25.08 %) and Hygophum benoiti (15.96 %) were the
most abundant larvae and E. encrasicolus (13.51 %)
and S. aurita (11.64 %) followed. A small percentage
remained unidentified (3.38 %). In 2006 larvae of epipe-
lagic taxa dominated and larvae of mesopelagic and dem-
ersal taxa followed. Engraulis encrasicolus (54.28 %),
S. aurita (1691 %) and C. maderensis (4.18 %) were the
most abundant larvae.

Total larvae abundance of Thermaikos was noticeably
higher in 2004 and 2006 mainly due to the strong pres-
ence of two epipelagic taxa (E. encrasicolus and S. aurita)
(Fig. 3, Table I). Lower abundances were recorded in
Thermaikos in 2005 and this can be attributed to the lower
presence of the epipelagics E.encrasicolus and S. aurita.
Among taxa groups, epipelagics followed a different pat-
tern to demersal and mesopelagic taxa as regarding abun-
dance (Fig. 3). More specifically, epipelagic taxa were
less abundant in 2005, while demersal and mesopelagic
taxa were recorded at lower abundances in 2005 and at
even lower abundances in 2006. As far as their horizontal
distribution is concerned, epipelagics were mainly domi-
nant in the west Thermaikos Gulf (Fig. 4A), mesopelagics
in the deep Chalkidiki (Fig. 4B) and demersal taxa in the
shallows stations of the east Thermaikos Gulf (Fig. 4C).

Environmental data showed differences over the
three year’s period. Average surface salinity (20 m) was
lower in 2004 and average surface temperature (20 m)
was lower in 2006 (Fig. 5). Lower sea surface tempera-
tures were recorded in 2006 across the Thermaikos and
Chalkidiki Gulfs (Fig. 6C). Horizontal distribution of sea
surface salinity showed lower values mainly in 2004 in
the west Thermaikos Gulf near the estuaries (Fig. 6D) and
in 2006 in the east Chalkidiki area (Fig. 6F). Surface chlo-
rophyll-a showed higher values in 2004 and 2006 mainly
in the west Thermaikos Gulf, close to the river estuaries
(Fig. 6G-I).

The two areas showed different characteristics in the
three ecological indicators (Table II). More specifically,
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Table I. — Continued.

Occurrence %

Abundance

2006

2005

2004

2006

2005

2004

Cha The Cha The Cha The Cha The Cha The Cha  Habitat

The

Author

Taxon
Linnaeus, 1758

Family

Order
Perciformes
Perciformes
Perciformes
Perciformes

15.7 55.8 4.9 358 259 100.0 50.0 71.4 33.3 85.7 100.0 B

114.0

Serranus hepatus

Serranidae

16.7

1.0
27.6

Linnaeus, 1758

Anthias anthias

Serranidae
Sparidae
Sparidae
Sparidae
Sparidae

83.3 14.3 50.0 143 833

71.4

11.5 9.0

62.4 3.4

Linnaeus, 1758 37.3

Diplodus annularis

16.7

16.7

1.2
1.2
4.4
7.7

Geoffroy Saint-Hilaire, 1817 15

Risso, 1827

Diplodus vulgaris

16.7

Pagellus acarne

Perciformes
Perciformes

16.7

Linnaeus, 1758

Pagellus erythrinus

50.0

42.9

2.3
0.4

Linnaeus, 1758

Sparidae Pagrus pagrus

Perciformes

16.7 14.3 33.3 14.3

14.3

0.6 4.3 0.7

1.0

Linnaeus, 1758

Trachinus draco

Trachinidae

Perciformes

16.7

1.2

Euphrasen, 1788
Linnaeus, 1758

Risso, 1810

Trichiuridae Lepidopus caudatus

Perciformes

21 14.3

0.5

Uranoscopus scaber

Auxis rochei

Uranoscopidae
Scombridae
Bothidae

Perciformes

I. FYTILAKOS, A. SIAPATIS, A. 1.

7.2 2.4 25.3 30.3 57.1 83.3 28.6 16.7 57.1 66.7
55.1 2.9 26.1 100.0 100.0 100.0

16.4

15.9

Perciformes

B

71.4

33.3 33.3

17.3

3.0

Bleeker, 1862 95.6

Arnoglossus sp.

Pleuronectiformes
Pleuronectiformes
Pleuronectiformes
Pleuronectiformes
Scorpaeniformes

14.3

1.2

Bonaparte, 1833

Soleidae

[oa o o' T I ' T R

16.7

16.7 28.6
16.7 286 16.7

14.3

28.6 16.7
50.0 16.7 16.7
50.0 143 66.7 143 50.0
50.0 50.0 83.3

14.3
14.3
28.6
14.3
14.3
14.3

1.0
0.9
0.9
12.2
33.0

2.8
0.8

1.2
29.5
14.0

1.5
1.2
1.5
0.6

0.7
0.8
12.2
36.6
6.8

0.8
0.4
13
1.0

0.8
1.4

Jespersen & Taning, 1926

Rafinesque, 1810
Gmelin, 1789
Risso, 1810

Risso, 1810
Lacepede, 1801

Linnaeus, 1758
Linnaeus, 1758
Linnaeus, 1758
Cocco, 1838

Symphurus nigrescens
Buglossidium luteum
Scorpaena sp1
Eutrigla gurnardus
Lepidotrigla cavillone
Vinciguerria attenuata

Gonostomatidae Cyclothone braueri
Sternoptychidae  Maurolicus muelleri

Stomiidae

Phosichthyidae
Zeidae

Cynoglossidae
Scorpaenidae
Scorpaenidae
Triglidae

Soleidae
Triglidae

Scorpaeniformes
Scorpaeniformes
Scorpaeniformes
Stomiiformes
Stomiiformes
Stomiiformes
Stomiiformes
Zeiformes

Vie Milieu, 2020, 70 (1)

PIKEA

9.1 16.7 33.3 33.3

3.1

1.0

Stomias boa
Zeus faber

16.7

16.7

0.9

1.2

Linnaeus, 1758

species richness varied over the
three year’s comparison 9 and 27
taxa in Chalkidiki and between 7 and
20 taxa in Thermaikos. The species’
richness of Thermaikos was signifi-
cantly higher in 2004 in comparison
with 2005 and 2006 (Kruskal-Wallis
test, p-value 0.0036). The Shan-
non index was significantly higher
in 2004 and 2005 in comparison
to 2006 (p-value 0.0032). Abun-
dance was significantly lower in
2005 in comparison with 2004 and
2006 (p-value 0.0016). As far as the
Chalkidiki area is concerned, no sig-
nificant differences were observed
over the three years when we com-
pared the three ecological indicators.
Horizontal distributions of the three
ecological indicators showed that
higher species richness was record-
ed at the majority of stations of
Chalkidiki, higher larval abundances
were recorded mainly in Thermaikos
and higher Shannon index values
were recorded at oceanic stations
near the limit of the shelf, although
this had not been evident in 2005
(Fig. 7).

The logarithmic-X model fitted
better when we tested the correlation
of depth with total larvae abundance.
Table III shows the relationships of
the three ecological indicators and
the abundance of the most dominant
epipelagic, mesopelagic and dem-
ersal taxa with depth. The single
regression model indicated that spe-
cies richness and the Shannon index
were significantly positively corre-
lated to depth although the relation-
ships were weak. Epipelagics and
mesopelagics were also significantly
correlated to depth. However demer-
sal abundance and total abundance
were negatively correlated to depth
with no significant correlation.

While many factors significantly
affected the ecological indicators,
the combination of physicochemi-
cal and topographic factors (and
especially the factors year, area and
combination) significantly affected
ecological indicators for all of the
possible combinations tested (Table
IV). Of the three years, 2004 and
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Table II. — Descriptive statistics of the three ecological indicators.

24

71

Fig. 4. — Horizontal distribution
of ichthyoplankton abundance
for the different taxa groups;
epipelagics (A) mesopelagics (B)
and demersal (C) for the three
years (2004-left, 2005-middle
and 2006-right). The contour of
200 m is present.

Species number Abundance Shannon index
Chalkidiki Thermaikos Chalkidiki Thermaikos Chalkidiki Thermaikos
2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006 2004 2005 2006
Minimum 12 9 13 11 7 7 450.3 303.7 5304 966.6 93.6 8434 1.5 1.3 1.7 1.0 1.2 0.6
Maximum 24 22 27 20 11 11 2590.3 2453.8 2230.2 7665.2 854.8 5233.1 2.3 1.9 2.4 2.0 1.9 11
Median 18.0 115 22.0 14.0 9.0 9.0 1632.3 1509.0 1225.1 2411.8 469.5 2300.7 1.8 1.7 2.0 1.2 1.7 1.0
25 percentile 12.0 9.0 153 11.0 70 8.0 6621 404.3 762.6 1929.6 154.2 1427.0 1.6 1.5 1.8 1.0 14 0.6
75 percentile 233 183 255 18.0 11.0 11.0 22859 2161.8 21742 3181.8 540.4 42921 2.0 18 23 17 18 1.1
A Table III. — Results of the simple regression model that was used
. E to represent the relationship between depth and the dependent
2006 —i 2006| ——— variables.
Dependent variable Intercept Slope P-Value R-squared
2005 — 2005 e
Demersal 16.37 -2.53 0.506 0.02
2004| - ——y Epipelagics 81.29 —27.58 0.018 0.14
Mesopelagics -49.87 32.45  0.000 0.40
350 355 360 365 & 5% 5 Species number 041 1.64  0.000 0.33
Salini 0
o Temperature (°C) Shannon index 055 0.34 0.003 0.21
Fig.5.— Comparison of the average sea surface values (20 m) of Abundance 47.47 -455 0.674 0.00
salinity (A) and temperature (B) between the three years. Whis- Model p
odel use:

kers represent the standard errors with the 95 % intervals.

Square root-Y model: Y = [a + b*sqrt(X)]*2
Independent variable

2006 presented significantly higher species richness than

2005. Chalkidiki presented significantly higher species

Tow Depth

richness and Shannon index than Thermaikos did. Ther-

maikos had a significantly higher total larvae abundance
mainly due to the epipelagics E. encrasicolus and S. auri-
ta. Differences were detected between high and low lev-

Vie Milieu, 2020, 70 (1)

els of surface salinity (0-20 m) for species’ richness and
between high and low levels of DIChl-a for the Shannon
index and larval abundance (Table IV). On the other hand,
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Fig. 6. — Horizontal distribution
of surface temperature (20 m)(A,
B and C), surface salinity (20 m)
(D, E and F) and surface chloro-
phyll-a (20 m) (G, H and I), in
2004 (A, D and G), 2005 (D, E
and F) and 2006 (G, H and I).

Fig. 7. — Horizontal distribution
of species richness (A), total
abundance (B) and Shannon
diversity index (C) for the three
years (2004-left, 2005-middle
and 2006-right).

surface temperature did not seem to have a significant
effect on species’ richness or abundance. The same results
were obtained when testing the ecological indicators
for differences between environmental factors with and
without counting the rare species (Table IV). ANOSIM

1. FYTILAKOS, A. STAPATIS, A. I. PIKEA

g ! s}
23°E 23.5°E 24°E .5°1 .5°) 23°E

4’
23°E 24°E

4
— &' _3,
23.5°E 24°E 24.5°E

40,5 ﬁ &“ 404
5 eSS0
;8

4
—e— 4! e, = —
235 24 245 . z 24E

2 % 405~ g\
cege f rege

m 2 %‘?0#%

2 )
245 225 23 235 24 245

44

© 395
N
m = ol

-
225 23 235 24

245 225 23 235 24

40, 40, 40,5
X
°8-0 8 §iog-0
4 Sl 2 44 40 :é/
O <
39, / 39,4 39,5 A0
S e
225 23 235 24 245 225 245 225 23 235 24 245
40,9 40,9 40,5 ?N

i\' H
° O Q—Q\ )
44 % %?J/‘O 44 Q. 30O 40|
Q < <
39,9 o 394 39,5

N In . 2N . W
225 23 235 24 245 225 23 235 2 24,5 225 23 235 24 245

p-value =0.0001) and years (R = 0.22, p-value = 0.0003).
Significant differences were also found when the compar-
ison was done without counting the rare taxa (R = 0.27,
p-value = 0.0002 and R =0.17, p-value = 0.0025, respec-
tively).

showed significant differences between areas (R = 0.42,

Vie Milieu, 2020, 70 (1)
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In total 62 taxa of larvae were identi-
fied in the Thermaikos and Chalkidiki
areas, a similar number compared to rel-
evant studies of a wider spatial scale in
the North Aegean Sea (Somarakis et al.
2008, Koutrakis et al. 2004) and in the
West Mediterranean Sea (Sabatés 1990a,
Sabatés & Olivar 1996). The western

2002, Somarakis et al. 2011a, Isari et al.

to eastern gradient regarding fish diver-
sity of the Mediterranean Sea (Coll et al.

2010) does not seem to find application to
ichthyoplankton species richness (Table

V). Ichthyoplankton species richness
across the Mediterranean (Table V) does
not seem to follow a similar eastward

decrease. The North Aegean Sea larval
richness is comparable to other areas of

the north Mediterranean Sea and longi-

tude does not seem to affect spatial pat-

terns of larvae species richness.

Late spring-summer is ideal for study-

ing spatial distribution and biodiversity
because it is a transitional period regard-

ing reproduction strategies of many fish.

It marks the end of the reproduction of
many winter spawners (e.g., Buglossidium

luteum, Trachurus trachurus) and the
beginning of summer spawners (e.g.,

Serranus cabrilla, Cepola macrophthal-
ma) (Somarakis et al. 2011a, Sabatés &

Olivar 1996). Summer coincides with
the spawning peak of many fish spe-

cies such as E. encrasicolus (Somarakis
et al.2011a, Palomera & Sabatés 1990),
C. maderensis, H. benoiti, S. shepatus
and C. macrophthalma (Sabatés 1990a).
This temporal coincidence of spawning

has multiple ecological extensions. Taxa

composition is similar to the results of
other studies with early spring to summer
samplings with bongo nets in the north

Aegean Sea (Somarakis et al. 2002) and
the western Mediterranean Sea (Sabatés

1990a). This is also evident in mesozoo-

plankton species composition (Siokou-

Fragkou et al. 2009). Their results show
that the majority of taxa have been identi-

fied at the species level and only a minor-

ity of them has been identified at the gen-
era/family level. Consequently, both the
results described in the literature as well

as our results are comparable because a
relevant taxonomic effort has been used.
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of fish larvae and secondly, spatial patterns seem to be
related to different spawning strategies of adults. Results
of other research generally agrees with the presence of
fish larvae close to the adults’ habitat and with the hetero-
geneous spatial distribution of larvae (Sabatés 1990a, b).

Regarding biodiversity, PERMANOVA showed that
Chalkidiki presented a higher species richness and Shan-
non diversity index when compared with Thermaikos,
despite the lower sampling effort of the former (only 6 sta-
tions in contrast to 7 stations at Thermaikos). Chalkidiki
offers a variety of habitats (oceanic and close to the coast)
and thus attracts multiple taxa groups; mesopelagic and
demersal taxa coexist near the narrow Chalkidiki shelf
and explain its richness. It is possible that the complex
topography of Chalkidiki provides adult fish and other
marine organisms — which can be prey for fish — with
many habitats for protection, and this attracts them, pro-
viding them with favorable conditions for reproduction.
Such positive relationships between complex environ-
ments and species diversity have been reported in numer-
ous reviewers in the past (Shmida & Wilson 1985, Bell et
al. 2000, Stein et al. 2014, Pinha et al. 2017, Witman et
al. 2004, etc.). Gratwicke & Speight (2005) interpret the
distinctive spatial patterns of species richness as habitat
complexity, with more complex areas having more spe-
cies than less complex ones. Habitat heterogeneity can
create different niches across localities thus increasing
p-diversity by favoring different groups of species as part
of deterministic processes (Chase 2010). Relative high
species richness and diversity values have been justified
in the past due to the spatial overlapping of larvae of ner-
itic and oceanic species (Rodriguez er al. 2013), which is
a feature of the Chalkidiki topography. On the other hand,
Thermaikos is characterized by spatially distinct habi-
tats which are separated by a wide continental shelf. The
environmental heterogeneity hypothesis, i.e., “more het-
erogeneous environments would be expected to support
a greater number of species” (Bell ef al. 2000, Stein et al.
2014, Yang et al. 2015) seems to be more applicable in
our case study as the Mediterranean Sea has the capac-
ity to hold a high number of species, proportionally to the
great variety of its marine habitats.

The exclusion of rare species in our analysis (ANO-
SIM and PERMANOVA) has not impacted our outcomes
regarding biodiversity. Their presence or absence does
seem to have any effect neither on the existing differences
among biocommunities nor on the relationship between
environment and diversity. Although their role regarding
biodiversity seems to be weak, they have a significant role
in identifying unique biocommunities (Cao ef al. 2001).
Each researcher shall decide whether they are important
in assessment studies, in predictive models or in pattern
analyses (Cao er al.2001).

Distribution and biodiversity are also affected by envi-
ronmental forcing (Bertrand et al. 2008, Sabatés 1990a,
Sabatés & Maso 1990). Higher species richness values

were recorded in 2004 in the Thermaikos Gulf, where
salinity was lower. It is possible that low salinity waters
from the western Thermaikos Gulf, where the estuaries
of five rivers are located, and low salinity waters from
the open Aegean Sea coming from the Dardanelles Strait
(Hyder et al. 2002) enriched with nutrients our study area
and this enhanced zooplankton production (Zervoudaki
et al. 2006), which is food for fish larvae. Probably, an
upwelling event took place in the Thermaikos Gulf during
2006 and enhanced local productivity. Larvae of Myc-
tophidae family (mesopelagics) were present at shallow
stations of Thermaikos, away from the deep Chalkidiki
area, which is the natural habitat of their adults. It is pos-
sible that hydrography contributed to the enrichment of
Thermaikos with mesopelagic taxa through horizontal
transportation. Despite this possible horizontal transpor-
tation of larvae, species richness of Thermaikos was still
significantly lower than species richness of Chalkidiki.
Lobianchia dofleini, Myctophum punctatum, H. benoiti
and C. maderensis are known to spawn during the year
(Siapatis & Somarakis 2007). Sabatés & Olivar (1996)
found C. maderensis larvae mainly at deep stations
(> 200 m) while they were present (but less abundant) at
shallow stations as well.

Higher surface chlorophyll-a in the western Ther-
maikos Gulf were recorded in 2004 and 2006, during
the years that epipelagic taxa abundances were high
(E. encrasicolus and S. aurita). Their adults are plank-
tivorous (Nikolioudakis et al. 2014) and prefer Thermai-
kos Gulf for its high primary and secondary production.
Despite the connectivity of the two study areas, physico-
chemical factors seem to significantly affect the repro-
ductive effort intensity of E. encrasicolus and, there-
fore, affect the total abundance of larvae (Somarakis et
al.2004). Sudden changes in larval abundance of small
pelagic species such as E. encrasicolus and S. aurita are
more likely related to the adult reproductive output as
they have the ability to produce great numbers of eggs in a
short period (Somarakis et al. 2011a). This temporal coin-
cidence of chlorophyll-a, which is an indirect indication
of the trophic condition of an ecosystem, with the high
abundances of the epipelagic larvae, is probably related to
a mechanism of larvae coincidence with their food. Such
coincidences between fish larvae and their food have been
reported in the past (Lasker 1981, Sabatés et al. 2007) and
it is possibly related with the stable ocean hypothesis and
the successful larval feeding (Lasker 1981). However, the
investigation of this coincidence should take place over
a longer period of time to establish the degree of abiotic
factors effect on species richness.

To conclude, ichthyoplankton spatial distribution stud-
ies provide niche modeling scientists with necessary data
and their cost-effective approach to conservation. Further-
more, they can provide useful information regarding bio-
diversity hotspots of the greater north Aegean Sea area,
thus helping us select and place emphasis on the conser-
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vation of specific sites. The study of ecological indicators
in dynamic ecosystems (such as estuaries) can give us a
reference point which to compare with less dynamic and
more pressed areas. Monitoring diversity in different areas
or periods can be a useful tool to determine the human
impact and the ecosystem resilience. Despite the over-
lapping in species’ functional roles in an ecosystem, the
role of every species in a community structure (Halpern
& Floeter 2008) and ecosystem functioning (Stuart-Smith
et al. 2013) is unique. Thermaikos and Chalkidiki are
two well-segregated areas regarding taxa groups’ habitat
in which species spatial overlapping and larvae dispersal
may exist. It is interesting to observe the role of Thermai-
kos as a nursery ground or as a fish spawning habitat in
the future and the way that great environmental changes
may affect larvae abundance at this semi-closed ecosys-
tem as compared to the wider north Aegean Sea area.
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